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! There are several reasons for studying deterministic models of computer e
‘systems and their work 1oads\: ) /ﬂép éz o

v

(1) With deterministic models, we can carry out a worst—case or a best-

j case analysis so that we can obtain upperbounds or lower-bounds on the nerformance

of a svstem under all nossible clrcumstances.

»
(2) Effects of variation of system parameters can be studied more
tdivectly and explicitly,
(3) There exists the possibility of designing optimal algorithms for
the effective utilization of system resources, Such algorithms often behave well
when the systems deviate from the (deterministic) model.

.

We present here three closely related topics to illustrate some of the

aspects of deterministic modelling, Accession For s
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We describe first a general model of computing system which can be

g
specialized in various ways to include most of the results we are going to present,

. We make the following assumptions :

(1) A computing svstem consists of two classes of resources, dedicated

resources  and shared resources. In each class, therve ave different kinds of

roesources., .

(2) There is a certain number of units of dedicated resources of each
kind, The execution of a job requircs an integral number of units of each kind,
including zero unit as a pussibilicy. The execution of a job completely occupies
a unit, and no other jobs can be executed on the same unit concurrently, Examnles

of dedicated rasources are processors, input-output devices, and so on.

(1) There is a unit of shaved vesources of cach kindT. The executon of.a
Job requires a fraction ot the unit of each kind of shared resources, including
zero as a possibility. Concurrent exccution of a number of jobs might share the
same unit ol shared resources, provided that the sum of che fractions of the unit
they share does not exceed one. Examples of shared resources are core memories,
magnetic disks and drums, amd so on.

(4) The units of each kind of dedicated vesources might not be identi-
cal. It might be the case that the execution times will be different when a job is
executed on different units of one kind of dedicated resources. It might be the
case that job can only be exccuted on some of the units of a particular kind of
dedicated resource. Since the execution of a job might require, in general, more
than one unit of dedicated resources of each kind, the exccution of a job is said

to be completed if its execution on all units is completed.

(5) The unit of each kind of shared resources is considered to be
uniform. A job will ralease the portions of shared resources it occupies when

its execution on all units of dedicated resources is completed.

<4
" There is no loss in generality in normalizing each kind of shared resources to

one unit.
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We describe first a general model of computing system which can be
#
specialized in various ways to include most of the results we are going to present.,

We make the following assumptions

(1) A computing svstem consists of two classes of resources, dedicated
resources and sharcd vesources. In each class, there ave differvent kinds of

resources. .

(2) There is a certain number of units of dadicated vesources of each
kind, The execution of a job requires an integral number of units of each kind,
including zero unit as a possibility. The execution of a job completely occupies
a unit, and no other jobs can be execcuted on the same unit concurrently. Fxamnles

of dedicated resources arc processors, input-output devices, and so on,

(%) There is a4 unit of shared vesources of cach kinda The exectuton of.a
Jjob requires a fraction ot the unit of each kind of shared resources, including
zero as a possibility. Concurvent execution of a number of jobs mipht share the
same unig of shared resources, provided thac the sum of the fractions of the unit
they share does not exceed one. Lxamples of shared resources are core memories,
magnetic disks and drums, and so on,

(4) The units of each kind of dedicated vesouyrces might not be identi-
cal. It might be the case that the execution times will be differcnt when a job is
exceuted on different units of one kind of dedicated resources. It might be the
case that job can only be executed on some of the units of a particular kind of
dedicated resource. Since the execution of a job might require, in general, more
than one unit of dedicated resources of each kind, the exccution of a job is said

to be completed if its execution on all units is completed.

(5) The unit of each kind of shared resources is coasidered to be
uniform. A job will ralease the portions of shared resources it occupies when

its execution on all units of dedicated resources is completed.

e
There is no loss in generality in normalizing each kind of shared resources to

one unit.
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| Let f = (3, 3y, vy Ji,500) be a set of jobd add < be a-precedence
trelation,onJ ¥, That Jk < J, means the execution of job Jz cannot bégin until

¢ has been completed. J, is called a predecessor cf e and
JQ 1§ called a successorof‘JK. A set of job is said tc be independent if the pre-
.Gédence relation < is empty. Each job in J is specified in the following way :
‘Let p denote the number of kinds of dedicited fesources and n denote the number
of units of each kind" in the cumputing system on wiich the set of jobs J is to
be -executed. Let q denote the number of hinds of shared reosources. The utiliza=

tion of the dedicated resources by a job J, is specified by a p ¥ n matrix

K
Ty = Fcijﬂ and a p component vectar Uy, = “"i”’ where 0 £ ¢y & w and far each
1 there exists at least one j such that tij < o, and u is an integer such that

i is the time it takes to exccute job J, on the jCh unit

. Ltho - .

0f dedicated rusotrces of the 17 kind. That tii = @ means that job JK cannot be
h ., . ] .th .,

executed on the J  units of dedicated resources on the i kind, The value of

u, is the number of units of dedicated resources on the ith kind which the

f)étngin. The value of ¢

e

* » . ** . i . . . A
execution of job JK reauires., Similarly, the utitization of the shared
resources bv J, is specified by a q component vector vy Hviﬂ, where 0Sv, < 1.
The value of vy is the fraction on the ith kind of shared resources which the

axecution of job e requires.

IT = SCHEDULING TO MINIMIZE COMPLETION TIMK

By scheduling a sot of jobs on a computing system, we mean to assign,
within certain time interval(s), to each job resources that are nceded for its
execution with the constraint that all the resouvces needed for the execution of
a job are assigned to the job simultaneously. A schedule is a specification of the
assianment of resources to the jobs, and a scheduling algoritim is a procedure
that nroduces a schedule for every given set of jobs. By preemptive scheduling .

discipline , we mean to allow the interruption of the execution of jobs in a

schedule. By non~preemprive scheduling discipline, we mean the execution of a

job must continue until completion, once its execution commences.

Different criteria can be used to measure how good a schedule is. The

post common one is the completion time of a schedule, that is, the total time it

T
“
il

A precedence relation is a binary relation thar is antisymnetric and transitive,
k . a . . - .

As will be seen, there is no loss of generality in assuming that there is the
same nunber of units in each kind o dedicated resources.

. . . T . . . th
for cach i, u, is not larger tha. the number of finite entries im the i~ row

of T,
kc
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€akeés to complete the execution of a set of jobs according to the schédule.
Cla2arly, for a givén set of jobs, a "good" schedule is oné with "short' complétion
Eiﬁé{ and an optimal schiedule is one with shortesc possible execution time: The

effectiveness of a scheduling algorithm is measured by how good thé schedules it

ptoduces are. One might wish to consider the worst case performance of a sche-

duling algorithm, ov one might wish to consider the average case performance of &
scheduling algorithm, Most of thae currént works are concerned with the worst

case performance analysis of scheduling algovithms. We shall make an attempt to
identify some of the general fcatures of scheduling nlgorithms.whose cffective- .

ness will be measured by the completion time of the schedules they produce,

L. There ave alporithms that produce optimal schedules. Clearly, opti-

mal schedules and algorithms that produce optimal schedules are of significant
interest. Unfortunately, very little is known about "efficient” algorithms that
produce optimal schedules for arbitrary computing systems and arbitrary sets of
jobs. As a matter of fact, efficient algorithms that produce optimal schedules

are known only for the [ollowing cases :

(1) Jobs having unit execution times with the nrecedence relation over

them being a forest are to be scheduled on a cumnuting system with

identical processors.

(ii) Jobs having unit execution times are to be scheduled on a computing

system with two identical processors.

We shall describe an algorithm due to YHu !l 31 which nroduces an optimal

We introduce first the notion of demand scheduling

schedule for case (i).
algorithm. A demand scheduling algorithm is one that always attemps to schedule

executable jobs on resources that are free at any time instant. In other words,
a demand scheduling algorithm never leaves any vesources idle innentionally.* A
particularlysimple class of demand scheduling algorithms is known as list

scheduling algorithms. A list scheduling algorithm assigns distinct priorities

A Job is sald to be executadble at a time instant if exccutions of its predeces=

sors have all been comnleted at that time instant.
~iL'It is not difficult to construct enamnles to show that there are ontimal sche-

dules in which resources are ieft idie intentionally.

A



to jobs and allocates resources to jobs with highest priorities among all executa=-

ble ones at any time instant.

llu's algorithm is a list scheduling alporithm. “We defire first the

notion of the level of a job :

{ (1) The level of a job that has no successor is delined to be 1. -

(i1) The level of a job that one or more successors 1s equal to one plus

the maximum value of the levels of its successors.

In Hu's alporithm priorities are assipned to jobs according to their levels such
that jobs of higher levels will have higher priorities. (Assignment of priorities .
to jobs of the same level is arbitrarv.) Hsu 'H21 contains a simple proof that

Hu's algorithm produces optimal schedules for case (i). See also Chen and Liu ([4].

i, Xasami, and Ninemiya {F2! and Coffmanand Graham [C7] discovered

1

ujt
algorithms that produce optimal schedules for case (ii). e present here Coffman

u
and Graham's algorithm, which is also a list scheduling algorithm. In Coffman and -

Craham's algorichm, nriorities are assigned to jobs as follows : .
]

(1) Starting with 1, which is the lowest prioritv, distinct and conse-

cutive priorities are assigned to jobs that have no successors

arbitrarily.

(11) Priorities are assigned to jobs with cne or more successors

recursively

(a) A job to all of whose successors priorities have been assi-

cned will be labelled with the priovitices of its successors

(il, i,y...) in decreasing order. =
(h) dempare the labeis of all labelled jobhs according zo the
fexicographical orvder. Starcing with the lowest unassigned
t
privvits, distinet and conseculive prioritics are assigned
to the iabelled -obs such that juhs with larger labels will be
’ -

aszigned higher .riorities,

o e 4 P s O e A -




We should poinc cut that there is a large body eof literatures on obtaiw
ning optimal schedules by the mechods of cumplete enumeracion, mixed integer aﬁd
nonlinear prog. amming, and dvnamic programming. Note that in these approaches,
the computation time required to produce an optimal schedule will be an exponen~

tial function of the number of jobs to be scheduled. We refer the reader to

Lenstra | L4 Kan ['RI]. See also Horowitz and Sahni (!} and Sahni [SI].

i and Kinooy Kan

2. There are simple scheduling alvorithms that spend very little effort

to  search Tor a sctosdule. Almost direetly opposite to the approach of speuding a

lot et etlort to determine an ontimal schedule, one conld consider the asnroach

of spendine lTittle or no eiflfort to scarch Tor a reasonablyv pood schedule. In

View of e discovery of the class of NP=complete problems, such an approach beco-

mes a particularly artecractive one. (As general references to the area of approxi-

matton alvoricthes, see Jolhinson +J17 and Carey and Johnson {G2] ). For example, a
’ Y

very simple scheduling alporithm 1s a list scheduling algorithm with arbitrary

assignment of prioritics. ihe following result is due to Graham 7166, 67, G8) :

Fhocem [ Vor o comnuting svstem with o identicai processors, let w
- t =3 A

denote the coempletion time ot a schedule for a given sct aof jobs produced by an

arbitrary iist scheduling aivorithm and et w9 denote the shortest possible com-
L

pletion time.' Then

For n = 2, the ration m/uo in Theoren | ois upperbounded by the cons-
me 3/2. that is, in terms of the comnletica time a schedule nroduced by any

.~

L
1ist schedulin~g algerizhim is not worse than an ontimal schedule by 507. then

the aurber of processors in the system increases, althourh the comnarison

hecomes less Tavorabie, che sub-ontimal schedule is never worse than an ontimal

schedule by N7,

-

“Frem aow on, we shall consistently use w to Jdenote rthe completion time of an

arbitrary scneduis and o 1o denote the compietion time of an optimal schedule,
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Theorem | can be extended immédiately :

o e
Theorem 2 (Liu and Liu (L7]):For a computing system with a, processors:. -
of speed bl’ n, processors of speed b2’ coey Ny processors of speed bk,-wﬁefé e,
- . . N
bl > b2 LI 4 hk & b, we have - T
b I}
-t-u-‘l).:g;_.l.(.l-T.;_l.._-. R
0 k . -
L oab,
. 1 N
i=|

Garey and Graham G117, and Yao (Y1) studied list scheduling algorithms

for computing systoms with shared resources. For example, similar to Theorems |

and 2, wo have,

w

Theorem 3 (Garey and Graham (Gl]) : For a computing system with n |

identical processors and cne kind of shared resources, we have )

250
0

]
Theorem 4 (Carey and Graham [Gl]) : For a computing system with two or h
— r

more processors and q kinds of shared resources and for a set of independent jobs,

- e

we have

N R +* 20~
—J-g an(E;l, q+2- é%rl)
(1] “

Sce also [I1, X1, L7, L8, L9) where various extensions of th2 case .

where the processor are not identical were studied.

3. There are cases in which an algorithm that produces optimal schedules

under a certain set of conditions is applied to situations that do not satisfy

these conditiocns. The following results illustrate this point : i

Theorem 5 (Chen {C21) : When Hu's algorithm is applied to schedule a
set of jobs with unit execution times on a computing system with n identical pro~

¢ ssors, Then




- L 3 r3
JCRPR) a=2
w, = 3 . .
Lg2 oL S
0 n

Theorem A (Lam and Sethi [42]) : When Coffman and Graham's algorithm
dis applied to schedule a sct. of jobs with unit cxecution times on a computing

system with n identical processors, Then

Kawfman [K37] extended Hu's algorithm to the scheduling of jobs with
unequal execulian times on o computing system with n identical processors, where
the precedence relacion over the jobs is a forest., By defining the lovel of a job
to be the length of the chain between the job and the root of the tree it is in

(including the execution time of the job itself), Kaufman has shown that
Theorem 7 : In the extended Hu's algorithm described above

w + % = k/n
P

€
[ PaN

where wp is the completion time when the jobs are executed according to an opti-
mal preemptive schedule, and k is the execution time of the longest job in the

set.

4, Thereave algorichms that perform a certain amount of computation

in order to produce good schedules, For example, consider the problem of schadu-

ling a set of independent jobs on a computing system with n identical processors.
If + » sort the jobs according to their execution times and assign high priorities
to jobs with long execution times, we can upperbound the worse case behavior of

such a list scheduling algorithm by :

Theorem 8 {(Graham [G77) : For the scheduling algorithm described above

le

— " —
Lt
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Extension of the idea of assigning high priorities to jobs with long
eXecution times to computing systems with non-identical processors have been car-
‘riéd out in Gonzales, lbarra, and Sahni [G91, and Ibarra and Kim [11] .

,,,,,, e h e e e ————

As another example, we consider the following algortihm for Schcduiing
a set of independent jobs oun a computing system with n identical processors @ Wé
pick out the k longest jobs in the set and schodule them in such a way that the
total execution time (for the execution of these k jobs) is minimum, The remaie-
ning jobs will be scheduled according to the rule that whenever a processor is
free an arbitrarily chosen job will be executed on that processor. Graham oG7]
" has shown that

Theorem 9 3 For the scheduling algorithm described above

E’E
lin
+

n

5. One can econsider alporithms that produce schedules which are as

clase to optimal schedules as iL is desired at the expense of computation time.

An algorithm is said to be an c¢-approximation algorithm if for a given ¢ the

algorithm will yicld a schedule such that the ratio (m-mo)/mo is less than €.
Sahni {S1]) studied the probiem of scheduling a set of independent jobs on a com=
puting system with n identical processors and obtained an c-approximation
algorithm whose complexity is 0‘(m(m2/L)n-l) where m is the number of jobs is the
sel.

ILL = SCHEDULE TO MERT DEADLINES

To illustrate some other aspects of the scheduling problem, we shall
survey some of the results on a generalization of our model by assuming that each
job has a ready time, a time at or after which execution of the job can begin,
and a deadline, a time at or prior to which execution of the job must be comple-
ted.For a given computing system with fixed amounts of resources; a set of job is
said to be schedulable if there isaschedule according to which all jobs can be
executed to wmcet their deadlines. Such a schedule will be referred to as a feasi-

bl schedule for the set of jobs. A set of jobs is said to be schedulable by a

1

scheduling algorithm if the algoritin yields a feasible schadule for the set.

Consequently, a scheduling algotichm is said to be optimal if it
1 ¥, 1l

o L 8 s s i T s 1t s S ru i s Lt st 07 it 12 )

“‘.i'

r

%

ki

[



a2

pad i

;‘yiélds‘a feasible schedule for every schedulable set of jobs. On thé other-hand,

Yg‘aeséheduling algorithm is not optimal, one would wish to measure theeffecti-
veness of the algearithm is terms of the fraction of schedulable scts of jobs it

is capable of scheduling.

I, QOptimal scheduling. Garey and Johnsor [G4, G57 obtained an optimal

scheduling alrorithm for the followinp casc :
(i) The computer system has two identical processors’
(ii) Each Job has unit exccution time,
(iii) Each job has a prespecifivd ready time and deadline.
(iv) There is an arbitrary precedence constraint over the jobs.

Garey and Johnson's algorithm yields a schedule that erables the completion of each

job before each deadline i¥ such a schedule exists,

2. Real=time scireduling, In many cases wien a computer is used for

control or monitorina functions, the following model is encountered,

(i) There is a single processor in the computer system.

(ii) Each job has a ready time and a deadline.
J y

(iii) The exccution of a job can be preempted by a another job.

In [Ll, {8, S31, an algorithm know as carliest deadline first algo=-

rithm has been shown to be optimal. The ecarliest deadline first algorithm always
execute a job that has the carliest deadline among ali the ready jobs. Thus, a
newly arrived job will preempt a job that is currently beinsg executed if the new
arrival has an earlier deadline. The carliest deadline first algorithm is optimal
in the sense that if a set of jobs can be scheduled by any algorithm, it can alse

be scheduied by the earliest deadline first algorithn,

Same variations of the pr blem are

il




(i) the execution of a job cannot be preempted.
(i1) There are two or more processors in the computer system,
(1i1) There is a precedence coustraint over the jobs.

(iv) The exccution of a job reguires other kinds of resources.

3. Jobs with Periodic Requests

A special case of recal time -cheduling was studied in [LG]. In this
case, a job consists of a periodic strcam of requests., That is, a job Ji demands
periodically Ci units of computaction time in every Ti units of time (Ti is refer=-
ted to as the reque t period), and the deadline of a raquest is assumed to be the
ready time of the next request of the same job, Although the carliest deadline
first scheduling algocithm can be applied to this case, another scheduling algo-

rithm known as the rate monutonic algorithm has been studied., In the rate monoto=

nic algorithm, requests of a job with the shortest request period always have
priorvity over the requests of a job with a longer request period, Not only such
an algorithm is easy to implement, its simplicity also cnables us to carry out a
more thorough analysisof its performance. Ye have

n G,
Theorom | @ Any set of n jobs with & yi <n (2‘

1=l i
duled by the rate nonotanie algoricthm to meet all deadlines. Furthermore, there

/n

- 1) can be sche=-

n C.
is a set ot n jobs with X Ti > (2l/n - 1) that cannot he scheduled by the
i=l i

rate monotonic algorithm,

heoreni | is again another example illustrating the possibility of
lower bounding the performance of a svstem. Note that Ci/Ti is the percentage of
time the jobs Ji will utilize the processor. Consequently, Theorem | says that if
a set of jobs doespot try to utilize the processor beyond a certain percentage,
the rate monotenic algorithm can guarantee that all deadlines wili be met . (Spe-
cifically, for n=2, n (2!7% = 1) = 0.828, for n ~ =, n 2'/® = 1) > 0.63). Note
that there are sets of jobs with a t tal utilization above the bound which can

still be scheduled by the rate monot nic algorithm. However, our bound provides

q",‘“),
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Asiguarantee under the worst possible situation,

Another resuct of the samé flavor is an estimation on the slack.time
of a request which is defined to be the time span between the completion of the
éxdcution of a request and its deadline. In many practical situation, not only
do. we wish to meet all the deadlines, we also would like to have a large slack
time if possible. We can show that {L5] :

Theoroem 2 ¢+ Lf the f£irst requests of all jobs occur at t = 0, then the

searem o
slack time of any raquest is larger than or equal to the slack time of the first

tequest of the same job,

n C.
Theorem 3 For a set of n jobs with ¥ TL <n (2'/“ - 1), the slack
i=l i

time of any request is larger than a equal to 0,207 g where g is the last quantum:
of processor time allocated to the first request of the same job,

n ¢,
Theorem 4 : For a sct of n jobs wich =& -t e (2l/n - 1) and with
i=1 Ti

"y ‘) "
lu . ln--l’

the slack time of any request of Ju is larger than or equal to
0.207 gwhere g is the last quantum of processor time alloeated to that request.

Again, note the possibility of lower bounding tio purformance of a

system under some very gpencral conditions,

Iv - BIN PACKING ALCORLTHM

The bin packing probiem can be described as placing a list of "pleces"
of size larger than O and less than or equal to 1 into "bins" of size ! so as to
minimize the rtotal number of bins utilized. There are séme immediate interpreta-

tions of the bin packing problem :

(i) Table formatting : To place items of data (piecces) in computer
words of fixed size (bins).

(ii) Prepaging ¢ To place program segments (pieces) into pages (bins).

(iii) File allocation : 1o nlace files (nicces) on disk tracks (bins).

A bin nacking aivorithm i1: sald te he ontimal 1 it uses the minimym

'S




y-— s

aumber of bins, On the other hand, the performance of a suboptimal algorithm can

be -measured by the quanticy gim £(k), where for a fixed k F(k) is the makimum
g0

number of bins used by the algorithm over all possiblelists of pieces that can

“be packed into k hins by an optimal algorithm divided by k.

o On=line Algorithms

A bin packing algorithm is said to be an on=line algorvithm if the pie=
ces ace available one at a time and a picce must he assigned to a hin before the
next one becomes available.  We mention first three well=-knoun almovithms

Next fic (NF) algovithm : A piece will bhe place inte the "current hin"
if it can be fit into that bin. If not, a new bin will be used and will be desi=

gnated the current bin,

First=fit (FF) algovichm : the bins will be indexed By, Ba,... A picce

will be placed into a bin j that can accomodate it with the smallest index j.

Best=fit (BF) algorithm ¢ The bins will be indexed By, Bo... A piece
will be placed into a bin that has been {illed to a highest possible level and
can still accomadate the piece., If thera are more than one such bin, choose the
one with the smallest index j.

we have [J31

Theorem | ¢

lim NF(k) = 2
K o> ®
. _ 17
i, PO = g5
. 17
(1 2 cewm
lxg W BF(k) 0

A new on=line algorithm was proposed by Yao [Yi} which is known as the
refined first fit (RFF) algorithm. The refined first fit algorithm can be descri-

bed as follows :

B Y




. (1) Apiece will be called an Aépiece,Rl-piecé,ﬁé-pioce, or X~piecé
if the §ize of the piece is in the interval ¢i/2, U1, (2/5, 1/2}, (1/3, 2/5], ot
€05 1731, respectively,

(2) The set of all bins are divided into four infinite-classes, to

'be referred to as class 1, 2, 3, 4, respectively,

(3) Let m be a fixed integer whose value can be chosen as 6, 7, 8,

or 9,
X , . . , ' Sth
(4) Suppose the Cirst j=1 picces have been assigned., The j piece
will beassigned according to the first=fit alaorithm into a bin of a certain
class, In particuiar,
(i) 10 it is an A=piece, it will be assigned to a class | bhin,

(i) 10 it is a B -picce, it will be assigned to a class 2 bin,

(iii) I¥ it is a By=piece, but pot the (mi)-th 32-piece secen so far

for some integer i+ ¢ 1, it will be assigned to a class 3 bin, If it is the (mi)=th

B,=piece for some integer i 2 1, it will be assipned to a class | tin containing

an A-piece if possible, or to a new class 1 bin otherwise,

1t can be shown that [¥27 :

po §

Theorem 2 ¢ lin
seorem o '

RFF(k) = 3

.

Yao 1Y21 has also obtained a lower bound on the performance of any

on-line bin packing algorithm :

oo

Theorem 3 ¢ For any on~line packing alsorithm §, lim S(k) 2
 —— v et K » @

2. Off-line Algorithms

A bin packing algorithm is said te be an off{-line algorithm if all

the pieces {or packing are available before commencing.

First=fit decreasing (FFD) algorithm @ the pieces are arranged is non~-

incresing order according to size ant then apply the firse=-fit algorithm,

¥

0.-."“

.-




e

Best={it decreasing (BFD) algovithm : The pieces are arrangéd in non=

incressing order accovding to size and then apply the best=fit algorithm,

Theorem 4 [JB],:

lim FFO(k) = %%

L > B

Him BED(K) = -

k>

3. Variation of Parameters

For a give system with a certainnerformance index, onc often would want
to know how the perlormance index varies as one or more of the parameters of the
system vavy, Such information will be useful, Lovr example, in determining the
cost=cffuctiveness ol tuning a system by varying some of the parameters. A study
by Friesen EH] on hin packing algorithms provides an interesting example, For a
given hin packimg alporichm, one might ask how the algorithm behaves if instead
of nacking the »icces tato bins of size | (the standard size) we shall pack
the  pieces into bins of size u, « » |, This is cxactly the case of determining
the performance of a paging algorithm when the size of a page is increased,

For example, an interaesting auestion is how bip the size of a page should become
so that a suboptimal papging algovithm will not used more pages than an optimal
paging alporithm when the latter uses nages of standard size, For a fixed k,

let FFDq(k) denote the maximum number of bins of size a used by the first fit
decreasing alporithm over all possible lists of pieces that can be packed by an

.
.

optimal algorithm using k bins of standard size (1) divided by k. He have TFIi
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Theotem 5

lim
kK -»

_ PFOG(K)

(1, 45/44)
[45/44, 30/29)
{30729, 25/24)
125/24, 20/19)
f20/19, 8/7)
(877, 15/13)
(15713, 3A/31)
{30731, 48/41)
{48741, 72/61)
[72/61, 2)

1/8
29/24
6/5
19/16
7/6
13/12
31/30
41/40
61/60
|
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